Toxics (Apr 2022)

Combined Process of Biogenic Manganese Oxide and Manganese-Oxidizing Microalgae for Improved Diclofenac Removal Performance: Two Different Kinds of Synergistic Effects

  • Quanfeng Wang,
  • Cenhui Liao,
  • Jujiao Zhao,
  • Guoming Zeng,
  • Wenbo Liu,
  • Pei Gao,
  • Da Sun,
  • Juan Du

DOI
https://doi.org/10.3390/toxics10050230
Journal volume & issue
Vol. 10, no. 5
p. 230

Abstract

Read online

Biogenic manganese oxides (Bio-MnOx) have attracted considerable attention for removing pharmaceutical contaminants (PhCs) due to their high oxidation capacity and environmental friendliness. Mn-oxidizing microalgae (MnOMs) generate Bio-MnOx with low energy and organic nutrients input and degrade PhCs. The combined process of MnOMs and Bio-MnOx exhibits good prospects for PhCs removal. However, the synergistic effects of MnOMs and Bio-MnOx in PhCs removal are still unclear. The performance of MnOMs/Bio-MnOx towards diclofenac (DCF) removal was evaluated, and the mechanism was revealed. Our results showed that the Bio-MnOx produced by MnOMs were amorphous nanoparticles, and these MnOMs have a good Mn2+ tolerance and oxidation efficiency (80–90%) when the Mn2+ concentration is below 1.00 mmol/L. MnOMs/Bio-MnOx significantly promotes DCF (1 mg/L) removal rate between 0.167 ± 0.008 mg/L·d (by MnOMs alone) and 0.125 ± 0.024 mg/L·d (by Bio-MnOx alone) to 0.250 ± 0.016 mg/L·d. The superior performance of MnOMs/Bio-MnOx could be attributed to the continuous Bio-MnOx regeneration and the sharing of DCF degradation intermediates between Bio-MnOx and MnOMs. Additionally, the pathways of DCF degradation by Bio-MnOx and MnOMs were proposed. This work could shed light on the synergistic effects of MnOMs and Bio-MnOx in PhCs removal and guide the development of MnOMs/Bio-MnOx processes for removing DCF or other PhCs from wastewater.

Keywords