Applied Water Science (Apr 2017)
Optimization of Fenton’s oxidation of herbicide dicamba in water using response surface methodology
Abstract
Abstract In this study Fenton’s oxidation of dicamba in aqueous medium was investigated by using the response surface methodology. The influence of H2O2/COD (A), H2O2/Fe2+ (B), pH (C) and reaction time (D) as independent variables were studied on two responses (COD and dicamba removal efficiency). The dosage of H2O2 (5.35–17.4 mM) and Fe2+ (0.09–2.13 mM) were varied and optimum percentage removal of dicamba of 84.01% with H2O2 and Fe2+ dosage of 11.38 and 0.33 mM respectively. The whole oxidation process was monitored by high performance liquid chromatography (HPLC) along with liquid chromatography/mass spectrometry (LC/MS). It was found that 82% of dicamba was mineralized to oxalic acid, chloride ion, CO2 and H2O, which was confirmed with COD removal of 81.53%. The regression analysis was performed, in which standard deviation (2.74), coefficient of correlation (R 2 = $$R_{\text{adj}}^{2}$$ R adj 2 ) and adequate precision (>12) were in good agreement with model values. Finally, the treatment process was validated by performing the additional experiments.
Keywords