Cellular Physiology and Biochemistry (Jul 2015)

MiR-1271 Inhibits Cell Proliferation, Invasion and EMT in Gastric Cancer by Targeting FOXQ1

  • Xiao-Jun Xiang,
  • Jun Deng,
  • Ya-Wen Liu,
  • Lu-Ying Wan,
  • Miao Feng,
  • Jun Chen,
  • Jian-Ping Xiong

DOI
https://doi.org/10.1159/000430304
Journal volume & issue
Vol. 36, no. 4
pp. 1382 – 1394

Abstract

Read online

Background/Aims: FOXQ1 overexpression has been reported to enhance tumor growth and invasion. However, the biological function of FOXQ1 and the mechanism underlying its upregulation in gastric cancer (GC) remain unknown. Methods: QPCR was used to detect the expression of miR-1271 and FOXQ1 in specimens from GC patients. FOXQ1-siRNA, and miR-1271 mimics and inhibitor were transfected into human MGC-803 and SGC-7901 cells. The transwell assay was used to examine the cell invasive ability. The regulation mechanism was confirmed by luciferase reporter assay. Markers of epithelial-mesenchymal transition (EMT) were detected by western blot analysis. Results: MiR-1271 was downregulated in both GC tissues and GC cell lines. The expression of miR-1271 was inversely correlated with tumor size (P = 0.017), tumor stage (P = 0.035), lymph node metastasis (P = 0.018), and TNM stage (P = 0.025). Ectopic expression of miR-1271 dramatically suppressed GC cell proliferation, invasion, and EMT. Furthermore, FOXQ1 was identified as a direct target of miR-1271. Knockdown of FOXQ1 inhibited GC cell malignant behavior, whereas FOXQ1 overexpression partially restored the suppression effects of miR-1271. Additionally, miR-1271 expression was negatively correlated with FOXQ1 in GC tissues. Conclusions: MiR-1271 inhibits cell proliferation, invasion, and EMT in GC by directly suppressing FOXQ1 expression.

Keywords