An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production
Claudia Conesa,
Eduardo García-Breijo,
Edwin Loeff,
Lucía Seguí,
Pedro Fito,
Nicolás Laguarda-Miró
Affiliations
Claudia Conesa
Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
Eduardo García-Breijo
Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València, Universitat de València, Camí de Vera s/n, 46022 Valencia, Spain
Edwin Loeff
Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València, Universitat de València, Camí de Vera s/n, 46022 Valencia, Spain
Lucía Seguí
Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
Pedro Fito
Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
Nicolás Laguarda-Miró
Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València, Universitat de València, Camí de Vera s/n, 46022 Valencia, Spain
Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.