Journal of Applied Computer Science and Technology (Feb 2024)
Deteksi Helm Keselamatan Menggunakan Jetson Nano dan YOLOv7
Abstract
Increasing awareness of the importance of head personal protective equipment in industrial and construction environments has become a major concern in efforts to improve occupational safety. This research developed an early detection system for the use of computer vision-based head protective equipment using the YOLOv7 model and the Jetson Nano controller. The YOLOv7 algorithm was chosen for its ability for fast and accurate object detection. The YOLOv7 model was trained with a total dataset of 2799 images and iterations of 100 epochs to detect head personal protective equipment with a high degree of accuracy. The system captures imagery, activates a warning alarm, and sends a notification to Telegram when a violation occurs on an object that is not wearing a safety helmet. The test results using the confusion matrix method showed that the developed system was able to detect head personal protective equipment with an accuracy rate of 97.23%, which shows the system's ability to recognize personal protective equipment with very high accuracy. In addition, the system also showed a precision value of 98.71% indicating that all detections performed were correct, and a recall of 95.63% which describes the system's ability to recognize most of the head personal protective equipment available. The average FPS result using GPU with CUDA on Jetson Nano reached 5,723 FPS.
Keywords