iScience (Apr 2024)

A degressive quantum convolutional neural network for quantum state classification and code recognition

  • Qingshan Wu,
  • Wenjie Liu,
  • Yong Huang,
  • Haoyang Liu,
  • Hao Xiao,
  • Zixian Li

Journal volume & issue
Vol. 27, no. 4
p. 109394

Abstract

Read online

Summary: With the rapid development of quantum computing, a variety of quantum convolutional neural networks (QCNNs) are proposed. However, only 1/2n2 features of an n-qubits input are transferred to the next layer in a quantum pooling layer, which results in the accuracy reduction. To solve this problem, a QCNN with a degressive circuit is proposed. In order to enhance the ability of extracting global features, we remove the parameters sharing strategy in the quantum convolutional layer and design a quantum convolutional kernel with global eyesight. In addition, to prevent a sharp feature reduction, a degressive parameterized quantum circuit is adopted to construct the pooling layer. Then the Z-basis measurement is only performed on the first qubit to control the operations on other qubits. Compared with the state-of-the-art QCNN, i.e., hybrid quantum-classical convolutional neural network, the accuracy of our model increased by 0.9%, 1%, and 3%, respectively, in three tasks: quantum state classification, binary code recognition, and quaternary code recognition.

Keywords