Journal of Aeronautical Materials (Jun 2022)
Simulation analysis of structural strength of 12 -strand two-dimensional braided PBO rope
Abstract
Two-dimensional braided rope is widely used in engineering, aerospace and many other fields, among which 12-strand two-dimensional PBO braided rope has excellent properties. Taking the 12-strand two-dimensional braided PBO rope as the research object, assuming that the cross section of the fiber bundle was circular, the braiding law and mechanical properties of the rope were studied. Using the circular braiding method for reference, the rope models with different knot diameter ratios were obtained. The representative volume elements of the rope model were intercepted and the periodic boundary conditions were applied for finite element simulation. The rope tensile experiments with different knot diameter ratios were carried out to explore the influence of knot diameter ratio on the rope strength. The simulation results were compared with the experimental results. The results show that with the increase of knot diameter ratio, the maximum tensile force that the rope increases significantly at first and then basically remains unchanged. An appropriate knot diameter ratio can effectively give play to the tensile performance of 12-strand two-dimensional braided rope, it promotes the study of mechanical properties of two-dimensional braided rope.
Keywords