Forum of Mathematics, Sigma (Jan 2025)
Length spectrum of large genus random metric maps
Abstract
We study the length of short cycles on uniformly random metric maps (also known as ribbon graphs) of large genus using a Teichmüller theory approach. We establish that, as the genus tends to infinity, the length spectrum converges to a Poisson point process with an explicit intensity. This result extends the work of Janson and Louf to the multi-faced case.
Keywords