PLoS ONE (Jan 2022)

Effect of irrigation with treated wastewater on bermudagrass (Cynodon dactylon (L.) Pers.) production and soil characteristics and estimation of plant nutritional input.

  • Mario Licata,
  • Davide Farruggia,
  • Nicolò Iacuzzi,
  • Claudio Leto,
  • Teresa Tuttolomondo,
  • Giuseppe Di Miceli

DOI
https://doi.org/10.1371/journal.pone.0271481
Journal volume & issue
Vol. 17, no. 7
p. e0271481

Abstract

Read online

In recent years, climate change has greatly affected rainfall and air temperature levels leading to a reduction in water resources in Southern Europe. This fact has emphasized the need to focus on the use of non-conventional water resources for agricultural irrigation. The reuse of treated wastewater (TWW) can represent a sustainable solution, reducing the consumption of freshwater (FW) and the need for mineral fertilisers. The main aim of this study was to assess, in a three-year period, the effects of TWW irrigation compared to FW on the biomass production of bermudagrass [Cynodon dactylon (L.) Pers.] plants and soil characteristics and to estimate the nutritional input provided by TWW irrigation. TWW was obtained by a constructed wetland system (CWs) which was used to treat urban wastewater. The system had a total surface area of 100 m2. An experimental field of bermudagrass was set up close to the system in a Sicilian location (Italy), using a split-plot design for a two-factor experiment with three replications. Results highlighted a high organic pollutant removal [five days biochemical oxygen demand (BOD5): 61%, chemical oxygen demand (COD): 65%] and a good efficiency in nutrients [total nitrogen (TN): 50%, total phosphorus (TP): 42%] of the CWs. Plants irrigated with TWW showed higher dry aboveground dry-weight (1259.3 kg ha-1) than those irrigated with FW (942.2 kg ha-1), on average. TWW irrigation approximately allowed a saving of 50.0 kg TN ha-1 year-1, 24.0 kg TP ha-1 year-1 and 29.0 kg K ha-1 year-1 on average with respect to commonly used N-P-K fertilisation programme for bermudagrass in the Mediterranean region. Soil salinity increased significantly (p ≤ 0.01) over the years and was detected to be higher in TWW-irrigated plots (+6.34%) in comparison with FW-irrigated plots. Our findings demonstrate that medium-term TWW irrigation increases the biomass production of bermudagrass turf and contributes to save significant amounts of nutrients, providing a series of agronomic and environmental benefits.