Muscles (Apr 2023)

Heat Shock Proteins: Important Helpers for the Development, Maintenance and Regeneration of Skeletal Muscles

  • Silvia Pomella,
  • Matteo Cassandri,
  • Francesco Antoniani,
  • Samuele Crotti,
  • Laura Mediani,
  • Beatrice Silvestri,
  • Margherita Medici,
  • Rossella Rota,
  • Alessandro Rosa,
  • Serena Carra

DOI
https://doi.org/10.3390/muscles2020014
Journal volume & issue
Vol. 2, no. 2
pp. 187 – 203

Abstract

Read online

The skeletal muscle is a highly plastic tissue that shows a remarkable adaptive capacity in response to acute and resistance exercise, and modifies its composition to adapt to use and disuse, a process referred to as muscle plasticity. Heat shock proteins (HSPs), a class of evolutionarily conserved molecular chaperones, have been implicated in the regulation of skeletal muscle plasticity. Here, we summarize key findings supporting the notion that HSPs are important components required to maintain skeletal muscle integrity and functionality. HSPs participate in the transcriptional program required for myogenesis and are activated following muscle exercise and injury. Their dysfunction, either as a consequence of improper expression or genetic mutations, contributes to muscle atrophy and leads to the development of myopathies and peripheral motor neuropathies. Denervation/reinnervation and repeated rounds of nerve degeneration/regeneration have been observed in motor neuropathies, suggesting that an imbalance in HSP expression and function may impair the repair of the neuromuscular junctions. Boosting HSP activity may help preventing muscle atrophy by promoting muscle differentiation and helping the repair of NMJs. Boosting HSP function may also help to combat the development of rhabdomyosarcoma (RMS), a highly aggressive type of pediatric soft tissue sarcoma whose cells have skeletal muscle features but are unable to fully differentiate into skeletal muscle cells.

Keywords