International Journal of Molecular Sciences (May 2023)

Investigation of Excited-State Intramolecular Proton Transfer and Structural Dynamics in Bis-Benzimidazole Derivative (BBM)

  • Junhan Xie,
  • Ziyu Wang,
  • Ruixue Zhu,
  • Jiaming Jiang,
  • Tsu-Chien Weng,
  • Yi Ren,
  • Shuhua Han,
  • Yifan Huang,
  • Weimin Liu

DOI
https://doi.org/10.3390/ijms24119438
Journal volume & issue
Vol. 24, no. 11
p. 9438

Abstract

Read online

The bis-benzimidazole derivative (BBM) molecule, consisting of two 2-(2′-hydroxyphenyl) benzimidazole (HBI) halves, has been synthesized and successfully utilized as a ratiometric fluorescence sensor for the sensitive detection of Cu2+ based on enol–keto excited-state intramolecular proton transfer (ESIPT). In this study, we strategically implement femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, aided by quantum chemical calculations to investigate the detailed primary photodynamics of the BBM molecule. The results demonstrate that the ESIPT from BBM-enol* to BBM-keto* was observed in only one of the HBI halves with a time constant of 300 fs; after that, the rotation of the dihedral angle between the two HBI halves generated a planarized BBM-keto* isomer in 3 ps, leading to a dynamic redshift of BBM-keto* emission.

Keywords