تحقیقات مالی (Aug 2019)
Grey Wolf Optimization Evolving Kernel Extreme Learning Machine: Application to Bankruptcy Prediction
Abstract
Objective: In the present era, businesses have developed to a large extent which has, in turn, forced them to manage their resources and expenditures wisely for the sake of competition. This is mainly because the competitive market has severely reduced the flexibility of companies, which means that their ability respond to different economic situations has reduced and this puts most firms at the constant risk of bankruptcy and contraction. Therefore, in this study, we have tried to predict the bankruptcy of manufacturing companies through preventing the occurrence of such risks. Methods: In this study, the "Kernel Extreme Learning Machine" has been used as one of the artificial intelligence models for predicting bankruptcy. Given that machine learning methods require an optimization algorithm we have used one of the most up-to-date, "Gray Wolf Algorithm" which has been introduced in 2014. Results: The above model has been implemented on the 136 samples that were collected from the Tehran Stock Exchange between 2015 and 2018. All of the performance evaluation criteria including the classification, accuracy, type error, second-order error and area under the ROC curve showed better performance than the genetic algorithm which was presented and its significance was confirmed by t-test. Conclusion: Considering the gray wolf algorithm’s high accuracy and its performance compared to the genetic algorithm, it is necessary to use the gray wolf algorithm to predict the bankruptcy of Iranian manufacturing companies either for investment purposes and for validation purposes, or for using internal management of the company
Keywords