Mathematica Bohemica (Jul 2024)

On monogenity of certain pure number fields of degrees $2^r\cdot3^k\cdot7^s$

  • Hamid Ben Yakkou,
  • Jalal Didi

DOI
https://doi.org/10.21136/MB.2023.0071-22
Journal volume & issue
Vol. 149, no. 2
pp. 167 – 183

Abstract

Read online

Let $K = \mathbb{Q} (\alpha) $ be a pure number field generated by a complex root $\alpha$ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot3^k\cdot7^s} -m \in\bb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.

Keywords