Applied Sciences (Jun 2024)
Landslide–Tunnel Interactions and Control Countermeasures under an Orthogonal System
Abstract
When a tunnel crosses a landslide orthogonally, this interaction can easily lead to instability in both the landslide and tunnel structures. Based on the relative positional relationship between a landslide and a tunnel, we studied the stress mode and deformation characteristics of the tunnel in three positional relationships: within the landslide mass, the sliding surface, and the sliding bed. The tunnel is a typical type located on a sliding surface at an engineering site, so we established a numerical model showing the intersection of the tunnel and the sliding surface. The plastic zone distribution, stress characteristics, and displacement distribution characteristics of the surrounding rock before and after tunnel excavation were studied. Based on the simulation results, we analyzed the control effect of anti-slide piles in controlling the tunnel’s deformation in the surrounding rock from four perspectives: the arrangement of anti-slide piles, the spacing between piles and tunnels, the diameter of anti-slide piles, and the depth of piles embedded in the bedrock. By analyzing the deformation law of the landslide mass and the force characteristics of the tunnel structure under the orthogonal conditions of a tunnel landslide, we provide theoretical guidance for the adoption of anti-slide piles to control instability in tunnel structures.
Keywords