PLoS ONE (Jan 2015)

Laser-Supported Dual Energy X-Ray Absorptiometry (DXL) Compared to Conventional Absorptiometry (DXA) and to FRAX as Tools for Fracture Risk Assessments.

  • Hans Lundin,
  • Faramarz Torabi,
  • Maria Sääf,
  • Lars-Erik Strender,
  • Sven Nyren,
  • Sven-Erik Johansson,
  • Helena Salminen

DOI
https://doi.org/10.1371/journal.pone.0137535
Journal volume & issue
Vol. 10, no. 9
p. e0137535

Abstract

Read online

Dual X-ray and Laser (DXL) adds a measure of the external thickness of the heel, measured by laser, to a conventional measurement of bone mineral density (BMD) of the calcaneus, using Dual energy X-ray Absorptiometry (DXA). The addition of heel thickness aims at a better separation of fatty tissue from bone than the standard method of DXA, which may mistake fatty tissue for bone and vice versa. The primary aim of this study was to evaluate whether DXL of the calcaneus can be used to assess the 10-year risk of fractures. Secondary aims were to compare the predictive ability of DXL with the two most established methods, Dual energy X-ray Absorptiometry (DXA) of the hip and spine and the WHO fracture risk assessment tool, FRAX. In 1999 a cohort of 388 elderly Swedish women (mean age 73.2 years) was examined with all three methods. Prospective fracture data was collected in 2010 from health care registers. One SD decrease in BMD of the heel resulted in an age-adjusted Hazard Ratio (HR) of 1.47 for a hip fracture (95% CI 1.09-1.98). Harrell's C is the Cox regression counterpart of the Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) as a measure of predictive accuracy. Harrell's C for BMD of the calcaneus was 0.65 for prediction of hip fractures. These results were not significantly different from those for BMD of the femoral neck or for FRAX. The HR for a hip fracture, for one SD decrease in BMD at the femoral neck, was 1.72 (95% CI 1.21-2.44. Harrell's C was 0.67 for BMD at the femoral neck and 0.59 for FRAX. We conclude that DXL of the calcaneus could be a useful tool for fracture risk assessments.