Current Issues in Molecular Biology (Sep 2024)

Effects of Curcumin on Radiation/Chemotherapy-Induced Oral Mucositis: Combined Meta-Analysis, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation

  • Zhi-Xing Chen,
  • Ya-Shi Qin,
  • Bang-Hui Shi,
  • Bi-Yun Gao,
  • Ren-Chuan Tao,
  • Xiang-Zhi Yong

DOI
https://doi.org/10.3390/cimb46090625
Journal volume & issue
Vol. 46, no. 9
pp. 10545 – 10569

Abstract

Read online

The study aims to investigate the effects of curcumin on radiation/chemotherapy-induced oral mucositis (R/CIOM) and preliminarily explore its mechanism. Randomized controlled trials were identified from the PubMed, Embase, Web of Science, Cochrane Library, Medline, and Google Scholar databases. RevMan 5.4 was used for statistical analysis to calculate the combined risk ratios (RRs). The mechanism was analyzed through network pharmacology, molecular docking, and a molecular dynamics simulation. The targets of curcumin were collected in HERB, PharmMapper, Targetnet, Swiss Target Prediction, and SuperPred. OMIM, GeneCards, and Disgenet were used to collect relevant targets for R/CIOM. Cytoscape software 3.8.0 was used to construct the component-target-pathway network. Protein–Protein Interaction (PPI) networks were constructed using the STRING database. GO and KEGG enrichment analyses were performed by Metascape. AutoDock Vina 4.2 software was used for molecular docking. The molecular dynamics simulation was performed by Gromacs v2022.03. It is found that 12 studies involving 565 patients were included. Meta-analyses showed that curcumin reduced the incidence of severe R/CIOM (RR 0.42 [0.24, 0.75]) and the mean severity of R/CIOM (MD -0.93 [−1.34, −0.52]). Eleven core target genes were identified in the treatment of R/CIOM with curcumin. The results of molecular docking and the molecular dynamics simulation showed that curcumin had strong binding energy and stability with target proteins including MAPK3, SRC, and TNF. Overall, these findings suggest curcumin can effectively improve severe R/CIOM, perhaps by affecting MAPK3, SRC, and TNF.

Keywords