Microbiology Spectrum (Apr 2022)

Genomic Epidemiology Insights on NDM-Producing Pathogens Revealed the Pivotal Role of Plasmids on blaNDM Transmission

  • Huiyue Dong,
  • Yan Li,
  • Jing Cheng,
  • Ziwei Xia,
  • Wentian Liu,
  • Tingting Yan,
  • Fangfang Chen,
  • Zhiqiang Wang,
  • Ruichao Li,
  • Jinjin Shi,
  • Shangshang Qin

DOI
https://doi.org/10.1128/spectrum.02156-21
Journal volume & issue
Vol. 10, no. 2

Abstract

Read online

ABSTRACT Incidences of nosocomial infections mediated by New Delhi metallo-β-lactamase (NDM) enzyme-producing Enterobacterales are increasing globally, resulting in a great burden to public health. The carbapenem-resistant Enterobacterales (CRE) were collected from Henan, China during 2013–2016. The blaNDM-positive strains were characterized using PCR, antimicrobial susceptibility testing, conjugation assay, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blot, whole-genome sequencing (WGS), and bioinformatics analysis. Eighty-one NDM-producing strains were identified among 391 nonduplicate CRE strains. Among them, four strains cocarried mcr and blaNDM genes, and two carried blaIMP-4 and blaNDM genes. The coexistence of blaNDM-5 and mcr-9 in Enterobacter hormaechei was found for the first time. In total, four blaNDM subtypes were identified. Among them, blaNDM-1 and blaNDM-5 were predominant. There was an obvious increasing trend in blaNDM-5 from 2013 to 2016. Thirteen different bacterial species were found among the 81 strains, and Escherichia coli was the dominant strain. blaNDM genes were located on nine different Inc-type plasmids, most of them on the IncX3 plasmids, except for the Pr-15-2-50 strain, which was located on the chromosome. We characterized two novel plasmids: the IncHI5-like plasmid carrying blaNDM-9 found in K. pneumonia, and the IncI1 blaNDM-5-positive plasmid. These findings provide the genomic basis for the widespread transmission of blaNDM and pave the way for the formulation of more effective monitoring and control methods. IMPORTANCE To control the emergence and transmission of CRE, it is important to perform retrospective genomic investigations. It is important to evaluate the plasmid diversity, genetic environment, and evolutionary relationships of the blaNDM-positive clinical strains in the early transmission stages. This study conducted an in-depth analysis of blaNDM-positive pathogens during a 4-year period using different methods for observing the high prevalence and active transmission of blaNDM-positive CRE. Moreover, we also explored the coexistence of the blaNDM and mcr, a clinically important mobile colistin resistance gene. This study shows that the prevalence of blaNDM-positive pathogens in Henan is high and the isolation rates increase each year. Moreover, plasmid-mediated horizontal transfer plays an important role in blaNDM dissemination. The co-occurrence of multiple resistance genes highlighted a long-lasting evolutionary pathway. Therefore, we have suggested the long-term continuous surveillance of clinical pathogens carrying blaNDM to learn the future transmission trend and curb the public health risk caused by CRE.

Keywords