Molecules (Sep 2018)

Effects of Process Parameters on Hydrolytic Treatment of Black Liquor for the Production of Low-Molecular-Weight Depolymerized Kraft Lignin

  • Zaid Ahmad,
  • Nubla Mahmood,
  • Zhongshun Yuan,
  • Michael Paleologou,
  • Chunbao (Charles) Xu

DOI
https://doi.org/10.3390/molecules23102464
Journal volume & issue
Vol. 23, no. 10
p. 2464

Abstract

Read online

The present research work aimed at hydrolytic treatment of kraft black liquor (KBL) at 200–300 °C for the production of low-molecular-weight depolymerized kraft lignin (DKL). Various process conditions such as reaction temperature, reaction time, initial kraft lignin (KL) substrate concentration, presence of a catalyst (NaOH), capping agent (phenol) or co-solvent (methanol) were evaluated. The research demonstrated effective depolymerization of KL in KBL at 250–300 °C with NaOH as a catalyst at a NaOH/lignin ratio of about 0.3 (w/w) using diluted KBL (with 9 wt. % KL). Treatment of the diluted KBL at 250 °C for 2 h with 5% addition of methanol co-solvent produced DKL with a weight-average molecular weight (Mw) of 2340 Da, at approx. 45 wt. % yield, and a solid residue at a yield of ≤1 wt. %. A longer reaction time favored the process by reducing the Mw of the DKL products. Adding a capping agent (phenol) helped reduce repolymerization/condensation reactions thereby reducing the Mw of the DKL products, enhancing DKL yield and increasing the hydroxyl group content of the lignin. For the treatment of diluted KBL (with 9 wt. % KL) at 250 °C for 2 h, with 5% addition of methanol co-solvent in the presence of NaOH/lignin ≈ 0.3 (w/w), followed by acidification to recover the DKL, the overall mass balances for C, Na and S were measured to be approx. 74%, 90% and 77%, respectively. These results represent an important step towards developing a cost-effective approach for valorization of KBL for chemicals.

Keywords