Sensors (Apr 2022)
Development and Performance Evaluation of a Low-Cost Portable PM<sub>2.5</sub> Monitor for Mobile Deployment
Abstract
The concentration of fine particulate matter (PM2.5) is known to vary spatially across a city landscape. Current networks of regulatory air quality monitoring are too sparse to capture these intra-city variations. In this study, we developed a low-cost (60 USD) portable PM2.5 monitor called Smart-P, for use on bicycles, with the goal of mapping street-level variations in PM2.5 concentration. The Smart-P is compact in size (85 × 85 × 42 mm) and light in weight (147 g). Data communication and geolocation are achieved with the cyclist’s smartphone with the help of a user-friendly app. Good agreement was observed between the Smart-P monitors and a regulatory-grade monitor (mean bias error: −3.0 to 1.5 μg m−3 for the four monitors tested) in ambient conditions with relative humidity ranging from 38 to 100%. Monitor performance decreased in humidity > 70% condition. The measurement precision, represented as coefficient of variation, was 6 to 9% in stationary mode and 6% in biking mode across the four tested monitors. Street tests in a city with low background PM2.5 concentrations (8 to 9 μg m−3) and in two cities with high background concentrations (41 to 74 μg m−3) showed that the Smart-P was capable of observing local emission hotspots and that its measurement was not sensitive to bicycle speed. The low-cost and user-friendly nature are two features that make the Smart-P a good choice for empowering citizen scientists to participate in local air quality monitoring.
Keywords