Arthritis Research & Therapy (Mar 2018)

Integrating genome-wide DNA methylation and mRNA expression profiles identified different molecular features between Kashin-Beck disease and primary osteoarthritis

  • Yan Wen,
  • Ping Li,
  • Jingcan Hao,
  • Chen Duan,
  • Jing Han,
  • Awen He,
  • Yanan Du,
  • Li Liu,
  • Xiao Liang,
  • Feng Zhang,
  • Xiong Guo

DOI
https://doi.org/10.1186/s13075-018-1531-1
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Kashin-Beck disease (KBD) is an endemic osteochondropathy of unknown etiology. Osteoarthritis (OA) is a form of degenerative joint disease sharing similar clinical manifestations and pathological changes to articular cartilage with KBD. Methods A genome-wide DNA methylation profile of articular cartilage from five KBD patients and five OA patients was first performed using the Illumina Infinium HumanMethylation450 BeadChip. Together with a previous gene expression profiling dataset comparing KBD cartilage with OA cartilage, an integrative pathway enrichment analysis of the genome-wide DNA methylation and the mRNA expression profiles conducted in articular cartilage was performed by InCroMAP software. Results We identified 241 common genes altered in both the DNA methylation profile and the mRNA expression profile of articular cartilage of KBD versus OA, including CHST13 (NM_152889, fold-change = 0.5979, P methy = 0.0430), TGFBR1 (NM_004612, fold-change = 2.077, P methy = 0.0430), TGFBR2 (NM_001024847, fold-change = 1.543, P methy = 0.037), TGFBR3 (NM_001276, fold-change = 0.4515, P methy = 6.04 × 10−4), and ADAM12 (NM_021641, fold-change = 1.9768, P methy = 0.0178). Integrative pathway enrichment analysis identified 19 significant KEGG pathways, including mTOR signaling (P = 0.0301), glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate (P = 0.0391), glycosaminoglycan biosynthesis-keratan sulfate (P = 0.0278), and PI3K-Akt signaling (P = 0.0243). Conclusion This study identified different molecular features between Kashin-Beck disease and primary osteoarthritis and provided novel clues for clarifying the pathogenetic differences between KBD and OA.

Keywords