Mathematics (Apr 2025)
An In-Depth Investigation of the Riemann Zeta Function Using Infinite Numbers
Abstract
This study focuses on an in-depth investigation of the Riemann zeta function. For this purpose, infinite numbers and rotational infinite numbers, which have been introduced in previous studies published by the author, are used. These numbers are a powerful tool for solving problems involving infinity that are otherwise difficult to solve. Infinite numbers are a superset of complex numbers and can be either complex numbers or some quantification of infinity. The Riemann zeta function can be written as a sum of three rotational infinite numbers, each of which represents infinity. Using these infinite numbers and their properties, a correlation of the non-trivial zeros of the Riemann zeta function with each other is revealed and proven. In addition, an interesting relation between the Euler–Mascheroni constant (γ) and the non-trivial zeros of the Riemann zeta function is proven. Based on this analysis, complex series limits are calculated and important conclusions about the Riemann zeta function are drawn. It turns out that when we have non-trivial zeros of the Riemann zeta function, the corresponding Dirichlet series increases linearly, in contrast to the other cases where this series also includes a fluctuating term. The above theoretical results are fully verified using numerical computations. Furthermore, a new numerical method is presented for calculating the non-trivial zeros of the Riemann zeta function, which lie on the critical line. In summary, by using infinite numbers, aspects of the Riemann zeta function are explored and revealed from a different perspective; additionally, interesting mathematical relationships that are difficult or impossible to solve with other methods are easily analyzed and solved.
Keywords