Beilstein Journal of Organic Chemistry (Jan 2011)

A new fluorescent chemosensor for fluoride anion based on a pyrrole–isoxazole derivative

  • Zhipei Yang,
  • Kai Zhang,
  • Fangbin Gong,
  • Shayu Li,
  • Jun Chen,
  • Jin Shi Ma,
  • Lyubov N. Sobenina,
  • Albina I. Mikhaleva,
  • Guoqiang Yang,
  • Boris A. Trofimov

DOI
https://doi.org/10.3762/bjoc.7.8
Journal volume & issue
Vol. 7, no. 1
pp. 46 – 52

Abstract

Read online

Molecules containing polarized NH fragments that behave as anion-binding motifs are widely used as receptors for recognition and sensing purposes in aprotic solvents. We present here a new example of a receptor, 3-amino-5-(4,5,6,7-tetrahydro-1H-indol-2-yl)isoxazole-4-carboxamide (receptor 1), which contains pyrrole, amide and amino subunits. This receptor shows both changes in its UV–vis absorption and fluorescence emission spectra upon the addition of F−, resulting in highly selectivity for fluoride detection over other anions, such as Cl−, Br−, I−, HSO4−, H2PO4− and AcO− in CH3CN. 1H NMR titration, time-dependent density functional theory (TDDFT) calculations and other experiments confirm that the sensing process is brought about by deprotonation of the pyrrole-NH in receptor 1.

Keywords