Geosciences (Jun 2023)

Integrated Schumann Resonance Intensity as an Indicator of the Global Thunderstorm Activity

  • Masashi Hayakawa,
  • Yuriy P. Galuk,
  • Alexander P. Nickolaenko

DOI
https://doi.org/10.3390/geosciences13060177
Journal volume & issue
Vol. 13, no. 6
p. 177

Abstract

Read online

This paper addresses the accuracy of estimates for the contemporary level of global thunderstorm activity found from the synchronous records of integrated Schumann resonance (SR) intensity at two high-latitude observatories in the Northern and Southern hemispheres. The results are based on numerical simulations of electromagnetic fields in the frequency band of the global (Schumann) resonance in the Earth–ionosphere cavity characterized by a realistic conductivity profile in the middle atmosphere. The credible distribution is used for global thunderstorm activity in space and time. The paired observatory locations are considered either at the geographic poles or at Svalbard and the Antarctic Peninsula. The seasonal variations in the spatial distribution of global thunderstorms are adopted from the OTD satellite observations. The diurnal variations imply the spatial and temporal distribution of lightning strokes measured by the WWLLN network for an arbitrarily chosen date of 18 January 2022. The results obtained suggest that simultaneous records of the integrated SR intensity at Svalbard and in Antarctica provide errors below 3% in the diurnal variations of global thunderstorm activity with a temporal resolution of 10 min. The seasonal changes in global thunderstorm intensity are estimated with an error of ~10%. Since the level of global thunderstorm activity varies by a factor of two on the both time scales, the estimates confirm the appropriate accuracy of the estimate of thunderstorm activity from the concurrent measurements at the high-latitude SR observatories in the Arctic and Antarctic.

Keywords