International Journal of Molecular Sciences (Dec 2022)

Photocatalytic Performance of Undoped and Al-Doped ZnO Nanoparticles in the Degradation of Rhodamine B under UV-Visible Light:The Role of Defects and Morphology

  • Alessandra Piras,
  • Chiara Olla,
  • Gunter Reekmans,
  • An-Sofie Kelchtermans,
  • Dries De Sloovere,
  • Ken Elen,
  • Carlo Maria Carbonaro,
  • Luca Fusaro,
  • Peter Adriaensens,
  • An Hardy,
  • Carmela Aprile,
  • Marlies K. Van Bael

DOI
https://doi.org/10.3390/ijms232415459
Journal volume & issue
Vol. 23, no. 24
p. 15459

Abstract

Read online

Quasi-spherical undoped ZnO and Al-doped ZnO nanoparticles with different aluminum content, ranging from 0.5 to 5 at% of Al with respect to Zn, were synthesized. These nanoparticles were evaluated as photocatalysts in the photodegradation of the Rhodamine B (RhB) dye aqueous solution under UV-visible light irradiation. The undoped ZnO nanopowder annealed at 400 °C resulted in the highest degradation efficiency of ca. 81% after 4 h under green light irradiation (525 nm), in the presence of 5 mg of catalyst. The samples were characterized using ICP-OES, PXRD, TEM, FT-IR, 27Al-MAS NMR, UV-Vis and steady-state PL. The effect of Al-doping on the phase structure, shape and particle size was also investigated. Additional information arose from the annealed nanomaterials under dynamic N2 at different temperatures (400 and 550 °C). The position of aluminum in the ZnO lattice was identified by means of 27Al-MAS NMR. FT-IR gave further information about the type of tetrahedral sites occupied by aluminum. Photoluminescence showed that the insertion of dopant increases the oxygen vacancies reducing the peroxide-like species responsible for photocatalysis. The annealing temperature helps increase the number of red-emitting centers up to 400 °C, while at 550 °C, the photocatalytic performance drops due to the aggregation tendency.

Keywords