Remote Sensing (Jul 2022)
Integrated Validation of Coarse Remotely Sensed Evapotranspiration Products over Heterogeneous Land Surfaces
Abstract
Validation of remotely sensed evapotranspiration (RS_ET) products is important because their accuracy is critical for various scientific applications. In this study, an integrated validation framework was proposed for evaluating RS_ET products with coarse spatial resolution extending from homogenous to heterogeneous land surfaces. This framework was applied at the pixel and river basin scales, using direct and indirect validation methods with multisource validation datasets, which solved the spatial mismatch between ground measurements and remotely sensed products. The accuracy, rationality of spatiotemporal variations, and error sources of RS_ET products and uncertainties during the validation process were the focuses in the framework. The application of this framework is exemplified by validating five widely used RS_ET products (i.e., GLEAM, DTD, MOD16, ETMonitor, and GLASS) in the Heihe River Basin from 2012 to 2016. Combined with the results from direct (as the priority method) and indirect validation (as the auxiliary method), DTD showed the highest accuracy (1-MAPE) in the vegetation growing season (75%), followed by ETMonitor (71%), GLASS (68%), GLEAM (54%), and MOD16 (44%). Each product reasonably reflected the spatiotemporal variations in the validation dataset. ETMonitor exhibited the highest consistency with the ground truth ET at the basin scale (ETMap) (R = 0.69), followed by GLASS (0.65), DTD (0.63), MOD16 (0.62), and GLEAM (0.57). Error sources of these RS_ET products were mainly due to the limitations of the algorithms and the coarse spatial resolution of the input data, while the uncertainties in the validation process amounted to 15–28%. This work is proposed to effectively validate and improve the RS_ET products over heterogeneous land surfaces.
Keywords