Discover Oncology (Jul 2023)

Artesunate alleviates 5-fluorouracil-induced intestinal damage by suppressing cellular senescence and enhances its antitumor activity

  • Jing Xia,
  • Qian long Dai,
  • Siyue He,
  • Hui-jie Jia,
  • Xian-Guo Liu,
  • Hui Hua,
  • Min Zhou,
  • Xiaobo Wang

DOI
https://doi.org/10.1007/s12672-023-00747-7
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Background Colorectal cancer (CRC) is one of the most prevalent diagnosed malignancies and one of the leading causes of cancer-related deaths worldwide. 5-Fluorouracil (5-FU) and its combination regimen are commonly used as primary chemotherapeutic agents for advanced CRC. Intestinal mucositis is one of the most frequent side effects of 5-FU. Artesunate (Arte) is derived from the wormwood plant Artemisia annua. Arte is not only effective against malaria but also diabetes, atherosclerosis, inflammation, and other conditions. The mechanism by which 5-FU damages the intestinal tract is unclear, and there is no standard treatment for diarrhea caused by 5-FU. Therefore, it is critical to discover novel and promising therapeutic drugs for 5-FU side effect treatment. Methods The morphology and expression of genes and proteins associated with the aging of HUVECs, HIECs, and intestinal tissues were compared to the those of the control group. The cell lines and tissues were evaluated by SA-β-Gal staining, Western blotting, and RT‒qPCR. HIEC and HCT116 cell viability was assessed in vitro by a CCK-8 assay and in vivo by a subcutaneous tumor mouse assay. Tumor cell proliferation and apoptosis was evaluated by immunohistochemistry. Results Here, we report that Arte alleviates the adverse side effects caused by 5-FU in intestinal tissue, and that 5-FU-induced intestinal damage is associated with drug-induced chemical inflammation and an increase in the proportion of senescent cells. Arte decreases the ratio of SA-β-Gal-positive cells and downregulated the expression of aging-related proteins (p53, p16) and aging-related genes (p53, p21). Mechanistically, Arte relieves intestinal injury by inhibiting mTOR expression, which is associated with the regulation of aging. Moreover, Arte suppresses the p38MAPK and NF-κB signaling pathways, which are related to inflammation regulation. In addition, the combined therapy of Arte plus 5-FU significantly decreases cancer cell viability in vitro. Arte and 5-FU synergistically reduce the growth of colorectal cancer (CRC) xenografts in vivo. Conclusions Overall, our findings point to the crucial treatment effect of Arte on inflammation, intestinal cell senescence, and CRC cell proliferation and offer a new option for CRC treatment.

Keywords