Cancer Nanotechnology (Mar 2023)

In vitro and in vivo study on the anticancer effects of anethole-loaded bovine serum albumin nanoparticles surface decorated with chitosan and folic acid

  • Farzaneh Sadeghzadeh,
  • Hasti Nasiraei Haghighi,
  • Mahdiyeh Ghiyamati,
  • Fateme Hajizadenadaf,
  • Masoud Homayouni Tabrizi

DOI
https://doi.org/10.1186/s12645-023-00181-y
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Anethole (Ant) is a herbal compound with unique properties, which is limited in its clinical use due to its low solubility in aqueous solutions. Therefore, in this study, albumin nanocarrier modified with chitosan-folate was used to transfer Ant to cancer cells and its anticancer effects were evaluated. First, Ant was loaded on albumin nanoparticles by desolvation method and then the surface of nanoparticles was covered with chitosan bound to folate. After characterization, the amount of Ant loading in nanoparticles was measured by the absorption method and then its toxicity effects on breast cancer cell lines, colon, and normal cells were evaluated by the MTT method. The real-time QPCR method was used to investigate the expression changes of apoptosis-related genes in the treated cells compared to the control cells, and finally, the antitumor effects of nanoparticles were evaluated in the mouse model carrying breast cancer. The results of this investigation showed the presence of nanoparticles with dimensions of 252 nm, a dispersion index of 0.28 mV, and a surface charge of 27.14 mV, which are trapped in about 88% of ATL. The toxicity effect of nanoparticles was shown on breast, colon, and normal cancer cells, respectively. In addition, the examination of the gene profile under investigation showed an increase in the expression of BAX and caspase-3 and -9 along with a decrease in the expression of the Bcl-2 gene, which confirms the activation of the internal pathway of apoptosis. The decrease in the volume of tumors and the presence of apoptotic areas in the tissue sections confirmed the antitumor effects of nanoparticles in the in vivo model. The inhibition percentage of free Ant and nanoparticles with a concentration of 25 and 50 mg/kg/tumor volume was reported as 36.9%, 56.6%, and 64.9%, respectively, during 15 days of treatment. These results showed the effectiveness of the formulation in inhibiting cancer cells both in vitro and in vivo.

Keywords