Intracellular calcium (Ca2+) concentration ([Ca2+]i) is implicated in proliferation, invasion, and metastasis in cancerous tissues. A variety of oncologic therapies and some candidate drugs induce their antitumor effects (in part or in whole) through the modulation of [Ca2+]i. Cervical cancer is one of most common cancers among women worldwide. Recently, major research advances relating to the Ca2+ signals in cervical cancer are emerging. In this review, we comprehensively describe the current progress concerning the roles of Ca2+ signals in the occurrence, development, and prognosis of cervical cancer. It will enhance our understanding of the causative mechanism of Ca2+ signals in cervical cancer and thus provide new sights for identifying potential therapeutic targets for drug discovery.