Scientific Reports (Mar 2021)
Metabolic engineering of probiotic Escherichia coli for cytolytic therapy of tumors
Abstract
Abstract Bacterial cancer therapy was developed using probiotic Escherichia coli Nissle 1917 (EcN) for medical intervention of colorectal cancer. EcN was armed with HlyE, a small cytotoxic protein, under the control of the araBAD promoter (PBAD). The intrinsic limitation of PBAD for the gene expression is known to be negated by glucose and afflicted with all-or-nothing induction in host bacteria. This issue was addressed by metabolic engineering of EcN to uncouple the glucose-mediated control circuit and the L-arabinose transport-induction loop and to block L-arabinose catabolism. As a result, the reprogrammed strain (designated EcNe) enabled efficient expression of HlyE in a temporal control manner. The HlyE production was insensitive to glucose and reached a saturated level in response to L-arabinose at 30–50 μM. Moreover, the administrated EcNe exhibited tumor-specific colonization with the tumor-to-organ ratio of 106:1. Equipped with HlyE, EcNe significantly caused tumor regression in mice xenografted with human colorectal cancer cells. Overall, this study proposes a new strategy for the bacteria-mediated delivery of therapeutic proteins to tumors.