IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2023)

A Novel Global Grid Model for Atmospheric Weighted Mean Temperature in Real-Time GNSS Precipitable Water Vapor Sounding

  • Liangke Huang,
  • Zhedong Liu,
  • Hua Peng,
  • Si Xiong,
  • Ge Zhu,
  • Fade Chen,
  • Lilong Liu,
  • Hongchang He

DOI
https://doi.org/10.1109/JSTARS.2023.3261381
Journal volume & issue
Vol. 16
pp. 3322 – 3335

Abstract

Read online

The atmospheric weighted mean temperature (Tm) is an important parameter in calculating the precipitable water vapor from Global Navigation Satellite System (GNSS) signals. As both GNSS positioning and GNSS precipitable water vapor detection require high spatial and temporal resolutions for calculating Tm, high-precision modeling of Tm has gained widespread attention in recent years. The previous models for calculating Tm have the limitation of too many model parameters or single-grid data. Therefore, this study presents a global high-precision Tm model (GGTm-H model) developed from the latest Modern-Era Retrospective Analysis for Research and Applications, version-2 (MERRA-2) atmospheric reanalysis data provided by the United States National Aeronautics and Space Administration. The accuracy of the GGTm-H model was verified by combining the MERRA-2 surface Tm data and 319 radiosonde data. The results highlighted that 1) When the MERRA-2 Tm data were used as a reference value, the mean annual RMSE of the GGTm-H model was observed to be 2.72 K. When compared with the Bevis model, GPT2w-5 model, and GPT2w-1 model, the GGTm-H model showed an improvement of 1.5, 0.33, and 0.21 K, respectively. 2) When the radiosonde data were used as a reference value, the mean bias and RMSE of the GGTm-H model were −0.41 K and 3.82 K, respectively. Compared with the other models, the GGTm-H model had the lowest mean annual bias and RMSE. The developed model does not consider any meteorological parameters while calculating Tm. Therefore, it has important applications in the real-time and high-precision monitoring of precipitable water vapor from GNSS signals.

Keywords