PLoS ONE (Jan 2012)

Evaluation of forest recovery over time and space using permanent plots monitored over 30 years in a Jamaican montane rain forest.

  • Shauna-Lee Chai,
  • John R Healey,
  • Edmund V J Tanner

DOI
https://doi.org/10.1371/journal.pone.0048859
Journal volume & issue
Vol. 7, no. 11
p. e48859

Abstract

Read online

Conservation of tropical forest biodiversity increasingly depends on its recovery following severe human disturbance. Our ability to measure recovery using current similarity indices suffers from two limitations: different sized individuals are treated as equal, and the indices are proportionate (a community with twice the individuals of every species as compared with the reference community would be assessed as identical). We define an alternative recovery index for trees - the Tanner index, as the mean of the quantitative Bray-Curtis similarity indices of species composition for stem density and for basal area. We used the new index to compare the original (pre-gap) and post-gap composition of five experimental gap plots (each 90-100 m(2)) and four control plots over 24-35 years in the Blue Mountains of Jamaica. After 24-35 years, these small gaps surrounded by undisturbed forest had recovered 68% of the sum of per species stem density and 29% of the sum of per species basal area, a recovery index of 47%. Four endemic species were especially reduced in density and basal area. With the incorporation of basal area and stem density, our index reduces over-estimations of forest recovery obtained using existing similarity indices (by 24%-41%), and thus yields more accurate estimates of forest conservation status. Finally, our study indicates that the two kinds of comparisons: 1) over time between pre-gap and post-gap composition and 2) over space between gap plots and spatial controls (space-for-time substitution) yield broadly similar results, which supports the value of using space-for-time substitutions in studying forest recovery, at least in this tropical montane forest.