Theory and Applications of Graphs (Jan 2020)

Graham's Pebbling Conjecture Holds for the Product of a Graph and a Sufficiently Large Complete Graph

  • Nopparat Pleanmani

DOI
https://doi.org/10.20429/tag.2020.070101
Journal volume & issue
Vol. 7

Abstract

Read online

For connected graphs $G$ and $H$, Graham conjectured that $\pi(G\square H)\leq\pi(G)\pi(H)$ where $\pi(G), \pi(H)$, and $\pi(G\square H)$ are the pebbling numbers of $G$, $H$, and the Cartesian product $G\square H$, respectively. In this paper, we show that the inequality holds when $H$ is a complete graph of sufficiently large order in terms of graph parameters of $G$.

Keywords