EPJ Web of Conferences (Jan 2021)
A novel apparatus and methodology for the high frequency mechanical characterisation of ultrasoft materials
Abstract
Characterising the mechanical response of ultra-soft materials is challenging, particularly at high strain rates and frequencies [1]. Time Temperature Superposition (TTS) can sometimes be used to mitigate these limitations [2], however not all materials are suitable for TTS. Biological tissues are particularly difficult to test: in addition to the extreme softness, challenges arise due to specimen inhomogeneity, sensitivity to boundary conditions, natural biological variability, and complex post-mortem changes. In the current study, a novel experimental apparatus and methodology was developed and validated using low modulus silicone elastomers as model materials. The full field visco-elastic shear response was characterised over a wide range of deformation frequencies (100-1000+ Hz) and amplitudes using Digital Image Correlation (DIC) and the Virtual Fields Method (VFM). This methodology allows for the extraction of fullfield material properties that would be difficult or impossible to obtain using traditional engineering techniques.