Development and validation of an fMRI-informed EEG model of reward-related ventral striatum activation
Neomi Singer,
Gilad Poker,
Netta Dunsky-Moran,
Shlomi Nemni,
Shira Reznik Balter,
Maayan Doron,
Travis Baker,
Alain Dagher,
Robert J Zatorre,
Talma Hendler
Affiliations
Neomi Singer
Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel; Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
Gilad Poker
Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel
Netta Dunsky-Moran
Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel; Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
Shlomi Nemni
Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
Shira Reznik Balter
Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel
Maayan Doron
Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Sackler School of Medicine, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
Travis Baker
Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
Alain Dagher
Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
Robert J Zatorre
Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada; International Laboratory for Brain, Music, and Sound Research (BRAMS), Canada
Talma Hendler
Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel; Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; Sackler School of Medicine, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; Corresponding author: Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Weizman 6, Tel-Aviv, 6423906, Israel.
Reward processing is essential for our mental-health and well-being. In the current study, we developed and validated a scalable, fMRI-informed EEG model for monitoring reward processing related to activation in the ventral-striatum (VS), a significant node in the brain's reward system. To develop this EEG-based model of VS-related activation, we collected simultaneous EEG/fMRI data from 17 healthy individuals while listening to individually-tailored pleasurable music – a highly rewarding stimulus known to engage the VS. Using these cross-modal data, we constructed a generic regression model for predicting the concurrently acquired Blood-Oxygen-Level-Dependent (BOLD) signal from the VS using spectro-temporal features from the EEG signal (termed hereby VS-related-Electrical Finger Print; VS-EFP). The performance of the extracted model was examined using a series of tests that were applied on the original dataset and, importantly, an external validation dataset collected from a different group of 14 healthy individuals who underwent the same EEG/FMRI procedure. Our results showed that the VS-EFP model, as measured by simultaneous EEG, predicted BOLD activation in the VS and additional functionally relevant regions to a greater extent than an EFP model derived from a different anatomical region. The developed VS-EFP was also modulated by musical pleasure and predictive of the VS-BOLD during a monetary reward task, further indicating its functional relevance. These findings provide compelling evidence for the feasibility of using EEG alone to model neural activation related to the VS, paving the way for future use of this scalable neural probing approach in neural monitoring and self-guided neuromodulation.