IEEE Journal of Translational Engineering in Health and Medicine (Jan 2024)

Enhancing Podocyte Degenerative Changes Identification With Pathologist Collaboration: Implications for Improved Diagnosis in Kidney Diseases

  • George Oliveira Barros,
  • Jose Nathan Andrade Muller da Silva,
  • Henrique Machado de Sousa Proenca,
  • Stanley Almeida Araujo,
  • David Campos Wanderley,
  • Luciano Reboucas de Oliveira,
  • Washington Luis Conrado Dos-Santos,
  • Angelo Amancio Duarte,
  • Flavio de Barros Vidal

DOI
https://doi.org/10.1109/JTEHM.2024.3455941
Journal volume & issue
Vol. 12
pp. 635 – 642

Abstract

Read online

Podocyte degenerative changes are common in various kidney diseases, and their accurate identification is crucial for pathologists to diagnose and treat such conditions. However, this can be a difficult task, and previous attempts to automate the identification of podocytes have not been entirely successful. To address this issue, this study proposes a novel approach that combines pathologists’ expertise with an automated classifier to enhance the identification of podocytopathies. The study involved building a new dataset of renal glomeruli images, some with and others without podocyte degenerative changes, and developing a convolutional neural network (CNN) based classifier. The results showed that our automated classifier achieved an impressive 90.9% f-score. When the pathologists used as an auxiliary tool to classify a second set of images, the medical group’s average performance increased significantly, from $91.4\pm 12.5$ % to $96.1\pm 2.9$ % of f-score. Fleiss’ kappa agreement among the pathologists also increased from 0.59 to 0.83. Conclusion: These findings suggest that automating this task can bring benefits for pathologists to correctly identify images of glomeruli with podocyte degeneration, leading to improved individual accuracy while raising agreement in diagnosing podocytopathies. This approach could have significant implications for the diagnosis and treatment of kidney diseases. Clinical impact: The approach presented in this study has the potential to enhance the accuracy of medical diagnoses for detecting podocyte abnormalities in glomeruli, which serve as biomarkers for various glomerular diseases.

Keywords