International Journal of Distributed Sensor Networks (Aug 2012)
Localization of Mobile Sensors and Actuators for Intervention in Low-Visibility Conditions: The ZigBee Fingerprinting Approach
Abstract
Indoor localization in smoke conditions is one of the EU GUARDIANS project goals. When smoke density grows, optical sensors such as laser range finders and cameras cease to be efficient. Zigbee sensor networks provide an interesting approach due to the fact that radiofrequency signals are propagated easily in such conditions. Moreover, they permit having an alternative communication infrastructure to the emergency brigades, allowing also the implementation of localization algorithms for the mobile sensors, actuators, and firefighters. The overall localization method (i.e., ARIEL) aims to acquire the nodes position in real time during an intervention, using different sensor inputs such as laser, sonar, Zigbee, and Wifi signals. Moreover, a fine grained localization algorithm has been implemented to localize special points of interest such as emergency doors and fire extinguishers, using a Zigbee programmable high-intensity LED panel. This paper focuses on the Zigbee fingerprinting localization method used to obtain the position of the mobile sensors and actuators by training a database of radio signals for each scenario. Once this is done the proposed recognition method runs in a quite stable and accurate manner without needing any sophisticated hardware. Results compare the procedure with others such as KNN, and neural networks, demonstrating the feasibility of the method for a real emergency intervention.