Nuclear Engineering and Technology (Jan 2023)
Determination of counting efficiency considering the biodistribution of 131I activity in the whole-body counting measurement
Abstract
Whole-body counters are widely used to assess internal contamination after a nuclear accident. However, it is difficult to determine radioiodine activity due to limitations in conventional calibration phantoms. Inhaled or ingested radioiodine is heterogeneously distributed in the human body, necessitating time-dependent biodistribution for the assessment of the internal contamination caused by the radioiodine intake. This study aims at calculating counting efficiencies considering the biodistribution of 131I in whole-body counting measurement. Monte Carlo simulations with computational human phantoms were performed to calculate the whole-body counting efficiency for a realistic radioiodine distribution after its intake. The biodistributions of 131I for different age groups were computed based on biokinetic models and applied to age- and gender-specific computational phantoms to estimate counting efficiency. After calculating the whole-body counting efficiencies, the efficiency correction factors were derived as the ratio of the counting efficiencies obtained by considering a heterogeneous biodistribution of 131I over time to those obtained using the BOMAB phantom assuming a homogeneous distribution. Based on the correction factors, the internal contamination caused by 131I can be assessed using whole-body counters. These correction factors can minimize the influence of the biodistribution of 131I in whole-body counting measurement and improve the accuracy of internal dose assessment.