Cancers (May 2021)

Evaluation of the Preclinical Efficacy of Lurbinectedin in Malignant Pleural Mesothelioma

  • Dario P. Anobile,
  • Paolo Bironzo,
  • Francesca Picca,
  • Marcello F. Lingua,
  • Deborah Morena,
  • Luisella Righi,
  • Francesca Napoli,
  • Mauro G. Papotti,
  • Alessandra Pittaro,
  • Federica Di Nicolantonio,
  • Chiara Gigliotti,
  • Federico Bussolino,
  • Valentina Comunanza,
  • Francesco Guerrera,
  • Alberto Sandri,
  • Francesco Leo,
  • Roberta Libener,
  • Pablo Aviles,
  • Silvia Novello,
  • Riccardo Taulli,
  • Giorgio V. Scagliotti,
  • Chiara Riganti

DOI
https://doi.org/10.3390/cancers13102332
Journal volume & issue
Vol. 13, no. 10
p. 2332

Abstract

Read online

Background: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. Methods: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. Results: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. Conclusion: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.

Keywords