Frontiers in Physics (Jul 2024)
Dynamic evolutionary analysis of opinion leaders’ and netizens’ uncertain information dissemination behavior considering random interference
Abstract
This paper investigates the decision-making behaviors of opinion leaders and netizens in the context of uncertain information dissemination with the aim of effectively managing online public opinion crises triggered by major sudden events. The decision-making behaviors of opinion leaders are categorized into positive and negative guidance, while those of netizens are classified into acceptance and nonacceptance. Using an evolutionary game model, this study introduces random factors to examine their influence on the decision-making processes of both groups. A stochastic evolutionary game model is constructed to analyze the behaviors of opinion leaders and netizens in the context of uncertain information dissemination. The evolutionary stability strategies and stochastic evolutionary processes of the model are analyzed based on the theory of Itô stochastic differential equations. The impacts of key variables such as random disturbances, the degree of psychological identification of netizens with opinion leaders, and the intensity of government penalties for those spreading negative information are examined through numerical simulations. The findings indicate that opinion leaders evolve to make stable strategies more rapidly than netizens do; random disturbances slow the evolution of stable strategies for both groups but do not alter their strategic choices; a higher degree of psychological identification increases the likelihood of netizens adopting the views of opinion leaders; and as punitive measures intensify, both opinion leaders and netizens are inclined to choose strategies of positive guidance and acceptance. The results of this study offer theoretical insights and decision-making guidance for future government strategies for managing similar online collective behaviors.
Keywords