International Journal of Mycobacteriology (Jan 2019)

Expression of mycolic acid in response to stress and association with differential clinical manifestations of tuberculosis

  • Naresh Kumar Sharma,
  • Nisha Rathor,
  • Rajesh Sinha,
  • Shraddha Gupta,
  • Gaurav Tyagi,
  • Kushal Garima,
  • Rakesh Pathak,
  • Pooja Singh,
  • Ashima Jain,
  • Mridula Bose,
  • Mandira Varma-Basil

DOI
https://doi.org/10.4103/ijmy.ijmy_69_19
Journal volume & issue
Vol. 8, no. 3
pp. 237 – 243

Abstract

Read online

Background: Extrapulmonary tuberculosis (EPTB), accounting for 10%–20% of all cases of tuberculosis (TB), is known to be determined by host immunity. However, the contribution of bacterial factors to the development of EPTB has not been studied extensively. Mycolic acids are predominant lipids constituting the cell wall of Mycobacterium tuberculosis, and keto-mycolic acid is involved in the synthesis of foamy macrophages that facilitate persistence of mycobacteria. Hence, the present study was performed to gain an insight into variable expression of mycolic acids in clinical isolates of M. tuberculosis under stress. Methods: Pansusceptible clinical isolates of M. tuberculosis from patients with lymph node TB (LNTB) (n = 10) and pulmonary TB (PTB) (n = 10) were subjected to sodium dodecyl sulfate (SDS) stress, and the expression of mycolic acid and its biosynthetic genes was compared. Any bias arising due to the genotype of the clinical isolates was ruled out by performing single-nucleotide polymorphism cluster grouping (SCG), wherein no significant difference was observed between the SCG of LNTB or PTB isolates. Results: The expression of α-mycolic acid during the exposure to SDS was high in 7/10 (70%) LNTB and 6/10 (60%) PTB isolates. Methoxy mycolic acid showed an increased expression in 7/10 (70%) LNTB isolates and 4/10 (40%) PTB isolates. Increased expression of keto-mycolic acid on exposure with SDS was observed in 8/10 (80%) M. tuberculosis LNTB and 3/10 (30%) PTB isolates. Similarly, the mycolic acid synthesis gene, fas, was upregulated more in LNTB isolates than PTB isolates in vitro and ex vivo. SCG 3a was the most common SCG observed in 40% (8/20) of the isolates, followed by SCG 3b in 30% (6/20) of the isolates. There was no significant difference between the SCG of LNTB or PTB isolates. Conclusion: The higher expression of keto-mycolic acid in LNTB as against PTB isolates may indicate better survival in LNTB isolates in the presence of stress.

Keywords