Frontiers in Electronic Materials (Sep 2023)

Spectral properties of a mixed singlet-triplet Ising superconductor

  • Sourabh Patil,
  • Gaomin Tang,
  • Gaomin Tang,
  • Wolfgang Belzig

DOI
https://doi.org/10.3389/femat.2023.1254302
Journal volume & issue
Vol. 3

Abstract

Read online

Conventional two-dimensional superconductivity is destroyed when the critical in-plane magnetic field exceeds the so-called Pauli limit. Some monolayer transition-metal dichalcogenides lack inversion symmetry and the strong spin-orbit coupling leads to a valley-dependent Zeeman-like spin splitting. The resulting spin-valley locking lifts the valley degeneracy and results in a strong enhancement of the in-plane critical magnetic field. In these systems, it was predicted that the density of states in an in-plane field exhibits distinct mirage gaps at finite energies of about the spin-orbit coupling strength, which arise from a coupling of the electron and hole bands at energy larger than the superconducting gap. In this study, we investigate the impact of a triplet pairing channel on the spectral properties, primarily the mirage gap and the superconducting gap, in the clean limit. Notably, in the presence of the triplet pairing channel, the mirage-gap width is reduced for the low magnetic fields. Furthermore, when the temperature is lower than the triplet critical temperature, the mirage gaps survive even in the strong-field limit due to the finite singlet and triplet order parameters. Our work provides insights into controlling and understanding the properties of spin-triplet Cooper pairs.

Keywords