Remote Sensing (Oct 2024)
Investigating the Role of Cover-Crop Spectra for Vineyard Monitoring from Airborne and Spaceborne Remote Sensing
Abstract
The monitoring of grape quality parameters within viticulture using airborne remote sensing is an increasingly important aspect of precision viticulture. Airborne remote sensing allows high volumes of spatial consistent data to be collected with improved efficiency over ground-based surveys. Spectral data can be used to understand the characteristics of vineyards, including the characteristics and health of the vines. Within viticultural remote sensing, the use of cover-crop spectra for monitoring is often overlooked due to the perceived noise it generates within imagery. However, within viticulture, the cover crop is a widely used and important management tool. This study uses multispectral data acquired by a high-resolution uncrewed aerial vehicle (UAV) and Sentinel-2 MSI to explore the benefit that cover-crop pixels could have for grape yield and quality monitoring. This study was undertaken across three growing seasons in the southeast of England, at a large commercial wine producer. The site was split into a number of vineyards, with sub-blocks for different vine varieties and rootstocks. Pre-harvest multispectral UAV imagery was collected across three vineyard parcels. UAV imagery was radiometrically corrected and stitched to create orthomosaics (red, green, and near-infrared) for each vineyard and survey date. Orthomosaics were segmented into pure cover-cropuav and pure vineuav pixels, removing the impact that mixed pixels could have upon analysis, with three vegetation indices (VIs) constructed from the segmented imagery. Sentinel-2 Level 2a bottom of atmosphere scenes were also acquired as close to UAV surveys as possible. In parallel, the yield and quality surveys were undertaken one to two weeks prior to harvest. Laboratory refractometry was performed to determine the grape total acid, total soluble solids, alpha amino acids, and berry weight. Extreme gradient boosting (XGBoost v2.1.1) was used to determine the ability of remote sensing data to predict the grape yield and quality parameters. Results suggested that pure cover-cropuav was a successful predictor of grape yield and quality parameters (range of R2 = 0.37–0.45), with model evaluation results comparable to pure vineuav and Sentinel-2 models. The analysis also showed that, whilst the structural similarity between the both UAV and Sentinel-2 data was high, the cover crop is the most influential spectral component within the Sentinel-2 data. This research presents novel evidence for the ability of cover-cropuav to predict grape yield and quality. Moreover, this finding then provides a mechanism which explains the success of the Sentinel-2 modelling of grape yield and quality. For growers and wine producers, creating grape yield and quality prediction models through moderate-resolution satellite imagery would be a significant innovation. Proving more cost-effective than UAV monitoring for large vineyards, such methodologies could also act to bring substantial cost savings to vineyard management.
Keywords