Tuning solid electrolyte interface against oxygen/superoxide-derived attack on Li-metal anode in Li-O2 battery
Zhengang Li,
Suting Weng,
Xiaohong Wu,
Cun Song,
Xiaoyu Yu,
Haitang Zhang,
Shiyuan Zhou,
Xin Wang,
Xuefeng Wang,
Yu Qiao,
Shi-Gang Sun
Affiliations
Zhengang Li
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Suting Weng
Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Xiaohong Wu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Cun Song
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Xiaoyu Yu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Haitang Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Shiyuan Zhou
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Xin Wang
Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
Xuefeng Wang
Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd., Liyang 213300, Jiangsu, China; Corresponding author at: Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
Yu Qiao
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen 361005, China; Corresponding author at: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Shi-Gang Sun
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Practical working environment (O2-saturated base electrolyte), architecture and operation mechanism/processes of Li-O2 batteries (LOBs) endows severe O2 and superoxide (O2-)-derived attack on Li-metal and solid electrolyte interface (SEI) at Li/electrolyte interface, limiting stability of Li anodes and LOBs. Herein, how O2/O2--derived attack on Li-metal and structure/composition of SEI are revealed by cryogenic transmission electron microscopy (cryo-TEM) and comprehensive spectroscopic characterizations. Specifically, generated from O2-reduction on Li-anode, the Li2O-induced nucleophilic attack on base electrolyte decomposition and Li corrosion especially during long-term aging, and more aggressive O2- created in cycling aggravates Li anodes and SEI. Moreover, to address O2/O2--derived attack on Li-metal, 1, 2-difluorobenzene (F-ben) was introduced as cosolvent in base electrolyte to make an F-ben electrolyte, in which F-ben preferentially reacted with Li-metal to form dual-functional SEI. Tuned SEI not only separate Li2O from bulk electrolyte thus suppresses O2-derived chemical attack, also acts as protective film protecting Li-metal against O2- attack. Eventually, electro-stability/reversibility of Li-metal in practical working environment of LOBs and battery performance of LOBs are significantly enhanced with help of F-ben cosolvent. This work sheds light on behavior of O2/O2--derived attack on Li-metal and SEI, sets an effective and practicable path towards practical applications of LOBs.