Journal of Medical Internet Research (Sep 2021)

A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study

  • Chae Jung Park,
  • Young Sang Cho,
  • Myung Jin Chung,
  • Yi-Kyung Kim,
  • Hyung-Jin Kim,
  • Kyunga Kim,
  • Jae-Wook Ko,
  • Won-Ho Chung,
  • Baek Hwan Cho

DOI
https://doi.org/10.2196/29678
Journal volume & issue
Vol. 23, no. 9
p. e29678

Abstract

Read online

BackgroundRecently, the analysis of endolymphatic hydropses (EHs) via inner ear magnetic resonance imaging (MRI) for patients with Ménière disease has been attempted in various studies. In addition, artificial intelligence has rapidly been incorporated into the medical field. In our previous studies, an automated algorithm for EH analysis was developed by using a convolutional neural network. However, several limitations existed, and further studies were conducted to compensate for these limitations. ObjectiveThe aim of this study is to develop a fully automated analytic system for measuring EH ratios that enhances EH analysis accuracy and clinical usability when studying Ménière disease via MRI. MethodsWe proposed the 3into3Inception and 3intoUNet networks. Their network architectures were based on those of the Inception-v3 and U-Net networks, respectively. The developed networks were trained for inner ear segmentation by using the magnetic resonance images of 124 people and were embedded in a new, automated EH analysis system—inner-ear hydrops estimation via artificial intelligence (INHEARIT)-version 2 (INHEARIT-v2). After fivefold cross-validation, an additional test was performed by using 60 new, unseen magnetic resonance images to evaluate the performance of our system. The INHEARIT-v2 system has a new function that automatically selects representative images from a full MRI stack. ResultsThe average segmentation performance of the fivefold cross-validation was measured via the intersection of union method, resulting in performance values of 0.743 (SD 0.030) for the 3into3Inception network and 0.811 (SD 0.032) for the 3intoUNet network. The representative magnetic resonance slices (ie, from a data set of unseen magnetic resonance images) that were automatically selected by the INHEARIT-v2 system only differed from a maximum of 2 expert-selected slices. After comparing the ratios calculated by experienced physicians and those calculated by the INHEARIT-v2 system, we found that the average intraclass correlation coefficient for all cases was 0.941; the average intraclass correlation coefficient of the vestibules was 0.968, and that of the cochleae was 0.914. The time required for the fully automated system to accurately analyze EH ratios based on a patient's MRI stack was approximately 3.5 seconds. ConclusionsIn this study, a fully automated full-stack magnetic resonance analysis system for measuring EH ratios was developed (named INHEARIT-v2), and the results showed that there was a high correlation between the expert-calculated EH ratio values and those calculated by the INHEARIT-v2 system. The system is an upgraded version of the INHEARIT system; it has higher segmentation performance and automatically selects representative images from an MRI stack. The new model can help clinicians by providing objective analysis results and reducing the workload for interpreting magnetic resonance images.