IEEE Access (Jan 2020)

Effects of Residual Hardware Impairments on Secure NOMA-Based Cooperative Systems

  • Meiling Li,
  • Bassant Selim,
  • Sami Muhaidat,
  • Paschalis C. Sofotasios,
  • Mehrdad Dianati,
  • Paul D. Yoo,
  • Jie Liang,
  • Anhong Wang

DOI
https://doi.org/10.1109/ACCESS.2019.2951940
Journal volume & issue
Vol. 8
pp. 2524 – 2536

Abstract

Read online

Non-orthogonal multiple access (NOMA) has been proposed as a promising technology that is capable of improving the spectral efficiency of fifth-generation wireless networks and beyond. However, in practical communication scenarios, transceiver architectures inevitably suffer from radio frequency (RF) front-end related impairments that cause non-negligible performance degradation. This issue can be addressed by analog and digital signal processing algorithms, however, inevitable aspects of this approach such as time-varying hardware characteristics and imperfect compensation schemes result to detrimental residual distortions. In the present contribution we investigate the physical layer security of NOMA-based amplify-and-forward relay systems under such realistically incurred residual hardware impairment (RHI) effects. Exact and asymptotic analytic expressions for the corresponding outage probability (OP) and intercept probability (IP) of the considered setup over multipath fading channels are derived and corroborated by respective simulation results. Based on this, it is shown that RHI affects both the legitimate users and eavesdroppers by increasing the OP and decreasing the IP. For a fixed OP, RHI generally increases the corresponding IP, thereby reducing the secure performance of the system. Further interesting insights are provided, verifying the importance of the offered results for the effective design and deployment of secure cooperative communication systems.

Keywords