Frontiers in Sustainable Food Systems (Nov 2024)
Isolation, structural characterization, and hypoglycemic activity of polysaccharides from the stems of Panax ginseng C. A. Meyer
Abstract
The purpose of this study was to obtain polysaccharides from Panax ginseng C. A. Meyer stems (PGSPs), agro-byproducts with development potential, and fully explore the potential value in P. ginseng stems. Two novel polysaccharides firstly from P. ginseng stems (PGSP-1 and PGSP-2) were obtained by water extraction and alcohol precipitation method and column chromatography, and then characterized by FT-IR, HPGPC, HPLC, SEM, TGA, GC–MS and NMR. The results demonstrated that PGSP-1 (Mw = 723.83 kDa) and PGSP-2 (Mw = 620.48 kDa) were characterized →4)-β-D-Galp-(1→, →6)-α-D-Glcp-(1 → and →2)-α-L-Rhap-(1 → as the skeleton, →4,6)-β-D-Galp-(1 → and →2,6)-α-D-Manp-(1 → as the cross junction, α-L-Araf-(1 → as the terminal unit, and PGSP-1 still contained →4)-β-D-Galp, while PGSP-2 contained →4)-β-D-Xylp-(1→, →3)-β-D-GlcpA-(1→, →4)-β-D-GalpA-(1 →) and α-D-Glcp-(1→, with different microstructures and thermal stability. And the results of hypoglycemic activity revealed that both PGSP-1 and PGSP-2 showed excellent inhibitory activity against α-glucosidase and α-amylase, in which PGSP-2 had the better performance. The inhibition kinetics result showed that PGSPs on α-glucosidase and α-amylase were non-competitive type and mixed type inhibition. This study provided a theoretical basis for making full use of and exploiting the economic value of agro-byproducts such as P. ginseng stems and offered a theoretical reference for the effective utilization of PGSP as a functional component to prevent and reduce T2DM.
Keywords