Nuclear Engineering and Technology (Feb 2024)

Development and testing of the hydrogen behavior tool for Falcon – HYPE

  • Piotr Konarski,
  • Cedric Cozzo,
  • Grigori Khvostov,
  • Hakim Ferroukhi

Journal volume & issue
Vol. 56, no. 2
pp. 728 – 744

Abstract

Read online

The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended timeframes like dry storage requires anticipating hydrogen behavior using numerical modeling. In this context, the present paper describes a hydrogen post-processing tool for Falcon – HYPE, a PSI's in-house tool able to calculate hydrogen uptake, transport, thermochemistry, reorientation of hydrides and hydrogen-related failure criteria. The tool extracts all necessary data from a Falcon output file; therefore, it can be considered loosely coupled to Falcon. HYPE has been successfully validated against experimental data and applied to reactor operation and interim storage scenarios to present its capabilities.

Keywords