PLoS ONE (Jan 2016)

Regulation of Inflammation by IL-17A and IL-17F Modulates Non-Alcoholic Fatty Liver Disease Pathogenesis.

  • Daniel A Giles,
  • Maria E Moreno-Fernandez,
  • Traci E Stankiewicz,
  • Monica Cappelletti,
  • Stacey S Huppert,
  • Yoichiro Iwakura,
  • Chen Dong,
  • Shiva K Shanmukhappa,
  • Senad Divanovic

DOI
https://doi.org/10.1371/journal.pone.0149783
Journal volume & issue
Vol. 11, no. 2
p. e0149783

Abstract

Read online

Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. While it is well-accepted that inflammation is central to NAFLD pathogenesis, the immune pathway(s) orchestrating disease progression are poorly defined. Notably, IL-17RA signaling, via IL-17A, plays an important role in obesity-driven NAFLD pathogenesis. However, the role of the IL-17F, another IL-17RA ligand, in NAFLD pathogenesis has not been examined. Further, the cell types expressing IL-17RA and producing IL-17RA ligands in the pathogenesis of NAFLD have not been defined. Here, IL-17RA-/-, IL-17A-/-, IL-17F-/- and wild-type (WT) mice were fed either standard chow diet or methionine and choline deficient diet (MCDD)--a diet known to induce steatosis and hepatic inflammation through beta-oxidation dysfunction--and hepatic inflammation and NAFLD progression were subsequently quantified. MCDD feeding augmented hepatic IL-17RA expression and significantly increased hepatic infiltration of macrophages and IL-17A and IL-17F producing CD4+ and CD8+ T cells in WT mice. In contrast, IL-17RA-/-, IL-17A-/-, and IL-17F-/- mice, despite increased steatosis, exhibited significant protection from hepatocellular damage compared to WT controls. Protection from hepatocellular damage correlated with decreased levels of hepatic T-cell and macrophage infiltration and decreased expression of inflammatory mediators associated with NAFLD. In sum, our results indicate that the IL-17 axis also plays a role in a MCDD-induced model of NAFLD pathogenesis. Further, we show for the first time that IL-17F, and not only IL-17A, plays an important role in NAFLD driven inflammation.