Sensors (Aug 2024)

A Dynamic Topology Optimization Method for Tactical Edge Networks Based on Virtual Backbone Networks

  • Zhixiang Kong,
  • Zilong Jin,
  • Chengsheng Pan

DOI
https://doi.org/10.3390/s24175489
Journal volume & issue
Vol. 24, no. 17
p. 5489

Abstract

Read online

To address the issues of low survivability and communication efficiency in wireless sensor networks caused by frequent node movement or damage in highly dynamic and high-mobility battlefield environments, we propose a dynamic topology optimization method based on a virtual backbone network. This method involves two phases: topology reconstruction and topology maintenance, determined by a network coverage threshold. When the coverage falls below the threshold, a virtual backbone network is established using a connected dominating set (CDS) and non-backbone node optimization strategies to reconstruct the network topology, quickly restore network connectivity, effectively improve network coverage, and optimize the network structure. When the coverage is above the threshold, a multi-CDS scheduling algorithm and slight position adjustments of non-backbone nodes are employed to maintain the network topology, further enhancing network coverage with minimal node movement. Simulations demonstrate that this method can improve coverage and optimize network structure under different scales of network failures. Under three large-scale failure operational scenarios where the network coverage threshold was set to 80%, the coverage was enhanced by 26.12%, 15.88%, and 13.36%, and in small-scale failures, the coverage was enhanced by 7.55%, 4.90% and 7.84%.

Keywords