Cell Reports (Dec 2024)
Latent learning drives sleep-dependent plasticity in distinct CA1 subpopulations
Abstract
Summary: Latent learning is a process that enables the brain to transform experiences into “cognitive maps,” a form of implicit memory, without requiring reinforced training. To investigate its neural mechanisms, we record from hippocampal neurons in mice during latent learning of spatial maps and observe that the high-dimensional neural state space gradually transforms into a low-dimensional manifold that closely resembles the physical environment. This transformation process is associated with the neural reactivation of navigational experiences during sleep. Additionally, we identify a subset of hippocampal neurons that, rather than forming place fields in a novel environment, maintain weak spatial tuning but gradually develop correlated activity with other neurons. The elevated correlation introduces redundancy into the ensemble code, transforming the neural state space into a low-dimensional manifold that effectively links discrete place fields of place cells into a map-like structure. These results suggest a potential mechanism for latent learning of spatial maps in the hippocampus.